
Chapter 1

Introduction

Increased vaccination rates over the past 50 years have saved hundreds of millions of

lives worldwide [12]. Immunization has led to the eradication of smallpox, a disease that

killed more than 300 million people between 1900 and 1977 alone [10]. It has led to the erad-

ication of two of three wild poliovirus (WPV) serotypes and the massive reduction in global

cases of WPV type 1, with just 12 reported cases in 2023 [5]. Recent vaccines for hepatitis

B and human papillomavirus (HPV) have provided long-term protection against chronic

diseases and have proved to be incredibly effective at preventing many types of cancers,

including cervical, penile, and vaginal cancers [7]. While vaccines can be vital and powerful

tools towards improving public health they often depend on high coverage to remain effec-

tive. Since the COVID-19 pandemic there is emerging evidence that global immunization

rates have stalled, particularly for children [11]. Further, increases in vaccine hesitancy in

developed countries have led to outbreaks in vaccine preventable diseases (VPDs) [1]. The

resurgance of VPDs poses a significant threat to public health, and especially threatens

vulnerable populations such as children and the elderly.

The decline in vaccination coverage is driven by many factors. Some of these factors can

be solved in good faith, including the inaccessibility of vaccine services [3], high costs [3],

fear of needles [14], and pain associated with vaccination [8]. Others are harder to address

and may potentially worsen over time, such as ingrained personal or cultural attitudes [4],

trust in public health institutions [13], exposure to misinformation [2], or simply lack of
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knowledge. Given broad modern adoption of digital communication, and recent advances

in natural language processing (NLP), this latter set of factors is suitable for computational

solutions. These issues can be broadly characterized as information factors negatively af-

fecting vaccine acceptance. When discussing such information factors and vaccines, there

is a strong tendency to focus on misinformation. This is for good reason. The World

Economic Forum’s 2024 Global Risks Report ranked mis- and disinformation as the most

severe near-term global risk, rated specifically as the most probable cause of material crisis

on a global scale [16]. Strong anti-vaccination (antivax) views grounded in misinformation

have become a point of discussion within even the top ranks of US politics [6]. Loomba

et al. [9] found that even for people who previously said they would “definitely accept”

the COVID-19 vaccine, misinformation induced at least a 6% decline in intent to vacci-

nate. There has been an observed rise in vaccine misinformation across social media [2].

However, there are many information factors beyond misinformation which impact vaccine

confidence. For example, Vasudevan et al. [15] found that maternal perceptions of whether

their newborn babies were small at birth is negatively associated with timely vaccination in

rural Bangladesh. While it’s hard to track if these mothers had been exposed to any direct

mis- or dis-information regarding infant size and vaccine safety, it’s reasonable to assume

that a lack of information entirely might produce such behaviors just as well. This could

be due to faulty reasoning, a non-understanding of advanced biology and vaccine science,

or simple emotions such as fear of potential harm to the child.

In this dissertation, I describe several key research advances that form a new technolog-

ical foundation for the public health field on this problem. These research advances allow

for the accelerated improvement of our understanding of information factors for vaccine

acceptance and new tools to develop interventions. In particular, I highlight language mod-

els as an emerging technology platform with massive potential for use in interventions of

vaccine concerns. These vaccine concerns, formally introduced and defined in ??, represent

articulable reasons for vaccine hesitancy, and allows this research a broader scope than just

concerns raised directly by misinformation.
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1.1 Challenges

Addressing information factors negatively affecting vaccine acceptance is unfortunately

not a straight-forward problem. It has been my experience in this space that application of

techniques from one discipline quickly surfaces substantial limitations which require diving

into a different discipline entirely. For example, in one of our earliest projects on this topic,

we attempted to build an exploration algorithm for social media communities in order to

discover comments that might be causal of new vaccine concerns. The attempt was to

apply principles from reinforcement learning (RL) to web data, but we quickly discovered

that the perception of a social media comment (our reward function) is highly subjective;

prompting us to switch focus towards the prediction of human opinion distributions, which

required a deeper dive of techniques from NLP. The most difficult challenges in this area

form two broad categories: (1) Data within this field is scarcely available and difficult to

use. This creates challenges for language model performance and even greater challenges for

evaluation. (2) There are very high standards in the public health domain to have a chance

at meaningful system adoption. These standards warrant greater focus on under-explored

topics of research within NLP. In Sections 1.1.1 and 1.1.2, I explain why challenges arise in

each of these two categories and highlight why these obstacles make progress in this space

particularly challenging for NLP-based solutions.

1.1.1 Data quality and availability

Unfortunately, there is not much when it comes to high quality datasets for real-life

discourse on vaccination. This lack of data availability is for several reasons. Social media

platforms have in the past five years began to significantly restrict the access to their

data. For example, while Facebook used to provide academic researchers with application

program interface (API) access to download data through a platform called CrowdTangle,

this feature was ultimately terminated in August of 2024 . This follows a wider trend

of making data less available and more expensive as demand for it has been driven up
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by corporate interest in large language model training . This problem is retroactive, since

many companies had policies of forbidding peer-to-peer data sharing except through unique

identifiers, which require researchers to download the actual text content of a Tweet or

Facebook post through the API themselves . When these APIs are made unavailable,

datasets released in the past become unusable.

An important aspect for ML models to achieve generalization is to provide independently

sampled distribution of training data . Getting an independent sample of anti-vaccination

content is very difficult. Out of all content on social media, the actual relevant content

regarding vaccines is only a tiny fraction of all social media posts . If you sample within

communities such as active antivax groups, the types of concerns you will find may not

generalize to a broader population and their concerns. The data is also polluted by artificial

intelligence (AI) generated content. Therefore, one must be able to ingest huge amounts of

data, and run high performance, unbiased relevance classification to filter out the samples

of interest. Doing so without accidentally biasing relevance classifiers with any potentially

unknown spurious correlation is a difficult technical challenge. The independence problem

is further exacerbated by the fact that anti-vaccination content is sometimes in violation of

the terms of agreement for social media platforms. Therefore, this content is often subject

to removal by the site , biasing samples even further and potentially removing the most

strongly held concerns from being available. This means that studying vaccine concerns on

social media is complicated by having to fill in an ambiguous hole of missing content based

on a proprietary filtering algorithm we simply don’t have access to.

Labeling the data is not only hard (which it is ), but also potentially sensitive. So-

cial media data contains potentially private information, and must therefore be carefully

handled to avoid leaks. Given that the topic of vaccines can be particularly polarizing,

even public social media posts need to be properly de-identified to ensure any attention

placed on them don’t lead to unfair backlash for the author. Even the annotators which

read this data could be exposed to large amounts of misinformation by labeling this data,

requiring additional risk mitigations on their behalf. The last thing we would want is to
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induce misinformed vaccine hesitancy in those involved with our project.

Solving all the above challenges, the resulting data in this domain is often far from

what would be considered clean or high quality language text. Social media data is full

of informal communication, relatively newly invented slang, obscure references, sarcasm,

abbreviations, evolving use and misuse of emojis, and insincere (troll) comments that are

meant to provoke reactions in others. When discussing topics that are known to get cen-

sored, some users employ sophisticated adversarial attack methods to evade text-based

content filtering algorithms. Dealing with this data presents additional challenges to any

language modeling algorithms used and may significantly impact performance.

Lastly, data in the domain of vaccine concerns is massively subjective. What seems

credible to one person may not seem credible to another. What raises a strong concern

regarding immunization for you may not cause much concern for me. Concerns regarding

vaccines are a personal and evolving target. Each person may change their mind regarding

vaccine throughout the years, and in fact they may even change their mind regarding a

single text throughout the week! There are constant shifts in interactions with vaccine

information. These shifts and subjective differences are not, however, noise. They are

important signal that should be captured and understood in order to fully understand

attitudes regarding vaccination. However, separating this signal from noise within the

already difficult-to-access, low-quality, sensitive data is a very challenging task.

1.1.2 High standards for system adoption

In public health, the stakes of mistakes is high. Poor model performance is not just a

dollar lost by a company, or some seconds wasted waiting for a search result to load. In pub-

lic health errors may result in real harm to human health. It’s therefore very understandable

that any intervention must meet exceedingly high standards and rigorous evaluation to be

adopted and trusted. There are several critical factors that make this challenging.

Most fundamentally, language model-based interventions must be easily understood

and trusted by both healthcare professionals and the general public to gain traction. This
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requires outputs and model decision’s be grounded in understandable and widely agreed

upon language and definitions. However, as covered in Section 1.1.1, vaccine concerns are

highly personal and subjective. Technological solutions in this space therefore have to do

both things at once: they must tailor to subjective differences and individual language,

but be easily explainable to anyone through the use of a shared language and agreed upon

definitions. From the perspective of NLP, this conflict of objectives is possibly one of the

most challenging tasks within the domain.

The evaluation of eventual interventions will be very closely scrutinized. There must

be rigorous evidence of impact and safety regarding tools for this space, something that

is particularly hard given how nascent language models are. Misclassifications or the acci-

dental spread of misinformation through language model outputs could exacerbate vaccine

hesitancy instead of mitigating it. Language model outputs must be verified by qualified

professionals as factual and unlikely to cause harm before being acceptable for use in human-

subject experimentation. Even for well-defined task, such as the classification of vaccine

attitudes in text, it is not just about the overall accuracy or performance of the models.

There are many things about the use of language models that we do not yet understand at

a level required for adoption of this technology in public health interventions. In the past

two years, the use of LLMs as automatic evaluation metrics has increased geometrically ,

but there is little understanding of the confidence we can have in these judgements. Like-

wise, LLMs are used to replace human judgements in several tasks, but the potential biases

and inconsistencies these models may exhibit are understudied. This point is especially

important when viewed through the perspective of trust. Trust is crucial in public health,

and remains an ongoing challenge in the use of LLMs, which tend to operate in ways that

are not easily explainable to non-technical audiences.

Lastly, due to the massive scale of potential interventions, cost is a consideration that

cannot be overlooked. Monitoring systems may need to work over terabytes of data every

month . Today, state-of-the-art (SOTA) LLM APIs are prohibitively expensive and too

slow to act as possible solutions for this type of scale. However, given the high standards
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discussed in this section, performance cannot be easily traded for cost.
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